Wavelets for computationally efficient hyperspectral derivative analysis
نویسندگان
چکیده
Smoothing followed by a derivative operation is often used in the analysis of hyperspectral signatures. The width of the smoothing and/or derivative operator can greatly affect the utility of the method. If one is unsure of the appropriate width or would like to conduct analysis for several widths, scale-space images can be used. This paper shows how the wavelet transform modulus-maxima method can be used to formalize and generalize the smoothing followed by derivative analysis and how the wavelet transform can be used to greatly decrease computational costs of the analysis. The Mallat/Zhong wavelet algorithm is compared to the traditional method, convolution with Gaussian derivative filters, for computing scale-space images. Both methods are compared on two points: 1) computational expense and 2) resulting scalar decompositions. The results show that the wavelet algorithm can greatly reduce the computational expense while practically no differences exist in the subsequent scalar decompositions. The analysis is conducted on a database of hyperspectral signatures, namely, hyperspectral digital image collection experiment (HYDICE) signatures. The reduction in computational expense is by a factor of about 30, and the average Euclidean distance between resulting scale-space images is on the order of 0.02.
منابع مشابه
Methodology for Hyperspectral Band Selection
While hyperspectral data are very rich in information, processing the hyperspectral data poses several challenges regarding computational requirements, information redundancy removal, relevant information identification, and modeling accuracy. In this paper we present a new methodology for combining unsupervised and supervised methods under classification accuracy and computational requirement ...
متن کاملFast hyperspectral data processing methods
The need for fast hyperspectral data processing methods is discussed. Discussion includes the necessity of faster processing techniques in order to realize emerging markets for hyperspectral data. Several standard hyperspectral image processing methods are presented, including maximum likelihood classification, principal components analysis, and canonical analysis. Modifications of those method...
متن کاملAn efficient technique for solving systems of integral equations
In this paper, the wavelet method based on the Chebyshev polynomials of the second kind is introduced and used to solve systems of integral equations. Operational matrices of integration, product, and derivative are obtained for the second kind Chebyshev wavelets which will be used to convert the system of integral equations into a system of algebraic equations. Also, the error is analyzed and ...
متن کاملThe using of Haar wavelets for the expansion of fractional stochastic integrals
Abstract: In this paper, an efficient method based on Haar wavelets is proposed for solving fractional stochastic integrals with Hurst parameter. Properties of Haar wavelets are described. Also, the error analysis of the proposed method is investigated. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the method.
متن کاملA new method based on fourth kind Chebyshev wavelets to a fractional-order model of HIV infection of CD4+T cells
This paper deals with the application of fourth kind Chebyshev wavelets (FKCW) in solving numerically a model of HIV infection of CD4+T cells involving Caputo fractional derivative. The present problem is a system of nonlinear fractional differential equations. The goal is to approximate the solution in the form of FKCW truncated series. To do this, an operational matrix of fractional integrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 39 شماره
صفحات -
تاریخ انتشار 2001